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Abstract: This study presents the design of an adaptive Kalman filter for networked systems involving random ‘sensor delays,
missing measurements and packet dropouts’. Two different adaptive filters are considered to estimate unknown parameter
vector associated with the system matrices and subsequently the estimation of state and parameters of the system based on
the minimisation of square of the output prediction error is adopted in bootstrap manner. An estimator-based robust controller
design has been proposed for asymptotic stability of the system whose parameters can vary within a known bound. The
effectiveness of the designed algorithms is tested through a numerical example under different cases.

1 Introduction

Feedback control systems wherein the control loops are
closed through an uncertain real-time network channel are
called networked control systems (NCSs). NCSs appeared
recently and have been drawing more and more atten-
tions from researchers working in the fields of systems
and control. In a sensor network (SN), independent sen-
sors connected to monitoring stations via uncertain shared
communication channel, where data measured by individ-
ual sensor are sent to the estimator. With the advent of
advanced networking technology a multidisciplinary effort
is being taken to develop a networked structure capable to
integrate distributed sensors, distributed actuators, and dis-
tributed control algorithms over a communication network
to make NCS suitable for real-time applications [1].

There are three important aspects in development of such
network control system. The first one is to design the
networked system (routing control, congestion reduction,
efficient data communication etc.) to meet the demands of
reliable and concurrent data communication for the con-
trol purposes [2]). The second important aspect is to design
an estimator-based controller to meet desired performance
while the information exchanged among control system
components (sensor, controller, actuator etc.) via a shared
network is not perfectly reliable one. Another important
aspect in NCSs is data packet dropout, which may be
potential source of instability and poor performance. The
problem of estimating the state of a remote plant based on
measurements carried through a lossy network is important
applications in NCSs. Owing to limited bandwidth of the
channel, the raw sensor measurement data are encapsulated
into packets and sent via communication channel, it may
suffer random delay. If delay is constant and uniform, it
can be treated as constant time-delayed system, which is
fairly unrealistic since delays resulting from the network

transmission are typically time-varying and it is, in true
sense, random by nature. Owing to its random nature, delay
must be considered while modelling the NCS. The effect of
delay in the system can degrade the performance of con-
trol systems designed without considering the delay and can
even destabilise the system.

The next uncertainty in NCS is that the data encapsu-
lated into packet may contain noise only (i.e. data packet
has no valid measurement) and when such packet is sent to
estimator, it is not distinguished from a packet containing
valid measurements and no corrective action is taken by the
network protocol. This is called missing measurements and
usually caused by the unavoidable errors or losses in the
transmission.

The another uncertainty in NCS is the loss of data pack-
ets because of channel deficiency or data congestion on the
channel and cannot be recovered at the receiver side. This
is known as data packet loss. Since it occurs randomly, it
must be considered separately while modelling the network
control system. In fact, data packets through networks suf-
fer not only transmission delay, but also possibly packet
dropout. The later is a potential source to destabilise the
system and degrade the performance of the NCS. The stabil-
ity problem of closed-loop NCS in the presence of network
delays and data packet dropouts has been focused by several
research workers [3–7].

In recent years, much attention has been paid for design
and analysis in NCSs. For most of the practical situations,
where a plant is connected to a remote-monitoring station
via wireless channel, there are two way of uncertainties
introduced (i) because of network channel and (ii) because
of perturbation in system parameter. If variation in sys-
tem parameters are known, adaptive Kalman filter can be
designed to estimate the system states by considering all
possible uncertainties introduced by the network channel.
A large number of technical literatures is available related to
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estimation and control in NCSs considering either of above
uncertainties ([8–12] and references therein). Uncertainties
are represented by discrete-time linear systems with Marko-
vian jumping parameter as described in [13, 14]. In [15],
a recursive self-tuning algorithm is adopted to estimate the
unknown parameters for a traditional (wired) system, where
no uncertainty has been considered in the channel between
sensor to estimator. To, the best of our knowledge, no arti-
cle has been reported for simultaneous state and parameter
estimation of unknown system under all three uncertainties
introduced by the networked system. In [10], the network
systems involving all three uncertainties in ‘sensor delays,
missing measurements and packet dropouts’ have been con-
sidered and an adaptive Kalman filter has been considered to
estimate the states of time-varying system, whose parameter
variations are known. It may be noted that the state estima-
tion algorithm described in [10] is dependent on the state
covariance matrix and fails to converge if the open-loop
system is unstable and subsequently the trace of the error
covariance matrix becomes unbounded. If system matrices
are dependent on unknown parameter vector, an adaptive
filter for parameter estimation must be combined along with
state estimation algorithm in bootstrap manner.

In this paper, the work of [10] is modified by reformulat-
ing the expression of error covariance matrix to make sure
that the estimator dynamics independent of the state covari-
ance matrix. This, in turn, ensures the convergence of trace
of error covariance matrix even though the open-loop sys-
tem is unstable. Subsequently, an adaptive Kalman filter has
been proposed to estimate state and parameter of the NCS in
a bootstrap manner whose parameters vary within the known
bounds. The innovation process and gradient of innovation
process are utilised to estimate the unknown parameters.
Furthermore, the system matrices at all points within the
convex polyhedron formed with the known bounded param-
eters may not be stable. In this paper, the existence of robust
stabilising controller for the NCS has been considered.

This paper is organised as follows. In section 2, the prob-
lem formulation of the system in presence of uncertainty
involved between sensor and estimator has been consid-
ered. All three uncertainties because of network channel,
described above, are modelled in form of an augmented
system using their probabilities of occurrence. In Section 3,
a general model for the estimator has been presented. Sec-
tions 4 and 5 discuss in detail the derivation of modified
filter design. In Section 6, parameter estimation algorithm
has been described and subsequently, the combined state
and parameter estimation algorithm in bootstrap manner is
presented in Section 7. Section 8 describes the design of
controller for robust stabilisation of uncertain systems with
the known bounds of the system parameters. In Section 9,
a numerical example has been presented to demonstrate
the effectiveness of the proposed algorithm under different
conditions. Finally, Section 10 concludes the paper.

2 Problem formulation

2.1 Problem statements

Consider the following parameter-dependent discrete time
system

x(k + 1) = A(θ)x(k) + B(θ)w(k) + E(θ)u(k) (1)

z(k) = C(θ)x(k) + v(k) (2)

where, x(k) ∈ Rn is the state vector with x(k ≤ 0) = x(0),
z(k) ∈ Rp is the measured output, u(k) ∈ Rm is the con-
trol input, and w(k) ∈ Rm and v(k) ∈ Rp are stationary,
zero-mean white noise Gaussian sequences with covariance
matrices

E[η(k) ηT(k)] = diag[�w(θ), �v(θ)] and

E[η(k) ηT(r)] = 0, k �= r (3)

where, η(k) = [wT(k) vT(k)]T, and w(k) and v(k) are
uncorrelated.

Matrices A, B, C, E, �w and �v are continuous functions
of an unknown parameter θ ∈ Rs. It is known that the true
value of θ is confined within a compact subset [a, b] of
s-dimensional Euclidean space Rs.

The initial conditions satisfy the mean and covariance
conditions

E[x(0)] = x0, E[(x(0) − x0)(x(0) − x0)
T] = p0 (4)

2.2 System model with uncertainties

Systems with mixed uncertainties in sensor delays, missing
measurements and packet dropout can be represented by the
following model:

If we define X (k + 1) = [xT(k + 1) xT(k) yT(k)]T and
W (k) = [wT(k) vT(k) vT(k − 1)]T then

X (k + 1) = Ar(θ)X (k) + Er(θ)u(k) + Br(θ)W (k) (5)

y(k) = Cr(θ)X (k) + Dr(θ)[0 I ]W (k)

�= Cr(θ)X (k) + Hr(θ)W (k) (6)

where, Hr(θ) = Dr(θ)[0 I ], I2p×2p is identity matrix of
compatible dimension with [vT(k) vT(k − 1)]T.

The matrices {Ar(θ), Br(θ), Cr(θ), Dr(θ), Er(θ)} may be
represented by using a stochastic binary parameter αq;
q = 1, 2, 3, 4 as

{Ar(θ), Br(θ), Cr(θ), Dr(θ), Er(θ)}
�=

4∑
q=1

αq{Aq(θ), Bq(θ), Cq(θ), Dq(θ), Eq(θ)} (7)

with,
∑4

q=1 αq = 1 and αq = 0 or 1.
Let {Aq(θ), Bq(θ), Cq(θ), Dq(θ), Eq(θ)}, q = 1, 2, 3, 4

denote the four models corresponding to the system with no
uncertainty, sensor delay, missing measurement and packet
dropout respectively. These system matrices are identified in
the following cases.

Case 1: No uncertainty (current measurement, q = 1): Mea-
surement equation at the estimator side will be available
as

y(k) = z(k) = C(θ)x(k) + v(k)

So

A1(θ) =
[

A(θ) 0 0
I 0 0

C(θ) 0 0

]
, B1(θ) =

[
B(θ) 0 0

0 0 0
0 I 0

]

E1(θ) =
[

E(θ)
0
0

]

C1(θ) = [C(θ) 0 0] and D1(θ) = [I 0]; Ip×p
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is identity matrix of compatible dimension with v(k).
Case 2: One-step sensor delay (q = 2): Measurement
equation at the estimator side will be available as

y(k) = z(k − 1) = C(θ)x(k − 1) + v(k − 1)

So

A2(θ) =
[

A(θ) 0 0
I 0 0
0 C(θ) 0

]
, B2(θ) =

[
B(θ) 0 0

0 0 0
0 0 I

]

E2(θ) =
[

E(θ)
0
0

]

C2(θ) = [0 C(θ) 0] and D2(θ) = [0 I ]; Ip×p

is identity matrix of compatible dimension with v(k).
Case 3: Missing measurement (for q = 3, the data packet
contains no valid measurement, but only noise): Mea-
surement equation at the estimator side will be available
as

y(k) = z(k) = v(k)

So

A3(θ) =
[

A(θ) 0 0
I 0 0
0 0 0

]
, B3(θ) =

[
B(θ) 0 0

0 0 0
0 I 0

]

E3(θ) =
[

E(θ)
0
0

]

C3(θ) = [0 0 0] and D3(θ) = [I 0]; Ip×p

is identity matrix of compatible dimension with v(k).
Case 4: Packet dropout (for q = 4, the whole data packet
is lost): At the estimator side only previously stored mea-
surement will be available.

y(k) = y(k − 1)

So

A4(θ) =
[

A(θ) 0 0
I 0 0
0 0 I

]
, B4(θ) =

[
B(θ) 0 0

0 0 0
0 0 0

]

E4(θ) =
[

E(θ)
0
0

]

C4(θ) = [0 0 I ] and; D4(θ) = [0 0]; Ip×p

is identity matrix of compatible dimension with y(k).
It is possible to adequately model the system and to

assign the probabilities of occurrence to each of above
cases, while empirical experimentations and observations
have been carried out on NCS under different situations.

Let probability that the system at time index k is
given by {Aq(θ), Bq(θ), Cq(θ), Dq(θ), Eq(θ)} = ρq(k), where,∑4

q=1 ρq(k) = 1
So, Pr[αq(k) = 1] = ρq(k) for q = 1, 2, 3, 4.

3 General model of estimator

Considering the state model represented by (5) and (6),
the corresponding augmented state estimator dynamics is
described as

Xs(k + 1) = As(θ)Xs(k) + Es(θ)u(k)

+ Gs(k)[y(k) − CsXs(k)] (8)

where, Xs(k) = [xT
s (k|k) xT

s (k − 1|k − 1)]T and xs(k|k) =
estimated state at time index k to minimise E[eT(k)e(k)]
= E{Tr[e(k)eT(k)]} = E{Tr[�e(k)]}, where e(k) = x(k) −
xs(k|k) and �e(k) is the error covariance matrix. The
estimator matrices are selected as

As(θ) =
[

A(θ) 0
I 0

]
, Es(θ) =

[
E(θ)

0

]

Gs(k) =
[

Ks(k)
0

]

and the corresponding time update and measurement update
equations are described as

xs(k + 1|k) = A(θ)xs(k|k) + E(θ)u(k) (9)

xs(k + 1|k + 1) = xs(k + 1|k) + Ks(k + 1)

× [y(k + 1) − CsXs(k + 1|k)] (10)

where, system matrices A(θ) and E(θ) are function of θ and
Ks(k) is the Kalman gain matrix at time index k .

Since in the packet dropout case, no new information is
received by the estimator, it is treated as an exceptional
case, which will be considered separately in the subsequent
sections.

4 Modified filter design with sensor delays
and missing measurements

In this section, we derive filter equation for the combine
cases having no uncertainty, one step sensor delays and
missing measurements (q = 1, 2, 3).

Let F = [I2n×2n 0], n = dimension of state vector x, such
that FX (k) = [xT(k) xT(k − 1)]T. Then FX (k) − Xs(k) =
[eT(k) eT(k − 1)]T.

For q = 1, 2, 3, as the right ‘block column’ of FAq is 0,
it can be shown that FAqX (k) = AsFX (k). Similarly, right-
most ‘block column’ of Cq, q = 1, 2, 3 is zero, it can be
prove that CqX (k) = CqFTFX (k). Also FEq = Es. So, if we
pre-multiply (5) by F and subtract (8) from it, we obtain

ζ(k + 1) = Asζ(k) + [FBr − GsHr]W (k)

− Gs[CrF
TFX (k) − CsXs(k)] (11)

where, ζ(k) = FX (k) − Xs(k) = [eT(k) eT(k − 1)]T.
Let 	

�= [I 0], I of compatible dimension with e(k),
such that e(k) = 	ζ(k). Hence, error covariance can be
expressed as

�e(k) = 	�ζ (k)	T (12)

Let Pr{System at time index k is {Aq(θ), Bq(θ), Cq(θ),
Dq(θ), Eq(θ)}, given measurement at time index k is
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y(k)} �= πq(k), for q = 1, 2, and 3, where

πq(k) = ρq(k)∑3
q=1 ρq(k)

, q = 1, 2, 3 (13)

Now for q = 1, 2, 3, Cs is defined as

Cs = Eαq [CrF
T] So, Cs =

3∑
q=1

πqCqFT (14)

It may be noted that there are two types of uncertain-
ties (namely process and measurement noises and αq) in
the expression of ζ(k), (11). If expectation of (11) over
stochastic parameter αq, q = 1, 2, 3 is taken and subse-
quently Eαq [CrFT] is replaced by Cs, then (11) can be
rewritten as

ζ(k + 1) = [As − GsCs]ζ(k) + Eαq [FBr − GsHr]W (k) (15)

So, augmented error covariance matrix �ζ(k) is modified
over [10] and is expressed as

�ζ(k) = Eαq [EW [ζ(k , αq)ζ(k , αq)
T]]

This gives

�ζ(k + 1) = [As − GsCs]�ζ(k)[As − GsCs]T

+ Eαq [FBr − GsHr]�W [FBr − GsHr]T

or

�ζ(k + 1) = [As − GsCs]�ζ(k)[As − GsCs]T

+
3∑

q=1

πq[FBq − GsH]q�W [FBq − GsHq]T

(16)

Pre-multiplying by 	 and post multiplying by 	T to (16),
replacing 	Gs as Ks and then, comparing with (12), error
covariance matrix can be expressed as

�e(k + 1) = [	As − KsCs]�ζ(k)[	As − KsCs]T

+
3∑

q=1

{πq	ϒq�W ϒT
q 	T} (17)

The problem of minimising E[e(k + 1)Te(k + 1)] may be
posed as

min
Ks

E{Tr[�e(k + 1)]} subject to (17). (18)

The necessary condition for the function in (18) to be
optimised is given by

∂

∂Ks
(Tr{E[�e(k + 1)]}) = 0 (19)

which gives

Ks =
[
	As�ζ(k)CT

s +
3∑

q=1

πq	FBq�W H T
q

]

×
[

Cs�ζ(k)CT
s +

3∑
q=1

πqHq�W H T
q

]−1

(20)

If we put Gs = 0 in (16), we obtain one step prediction
equation for error covariance in augmented form

�ζ(k + 1|k) = As�ζ(k|k)AT
s +

3∑
q=1

πqFBq�W BT
q FT (21)

Setting As = I , and Bq = 0 in (20) one can obtain Kalman
filter gain as

Ks = 	�ζ (k)CT
s

[
Cs�ζ(k)CT

s +
3∑

q=1

πqHq�W H T
q

]−1

(22)

Since, Ks = 	Gs, Gs may be selected as [KT
s 0]T.

Again setting As = I and Bq = 0 in (16), one can obtain
measurement update equation for augmented error covari-
ance matrix as

�ζ(k|k) = [I − GsCs]�ζ(k)[I − GsCs]T

+
3∑

q=1

{πqGsHq�W H T
s Gq

T} (23)

5 Filter design with packet dropout

When packet dropout occurs, no new measurement informa-
tion is received. That is, if kth sampled data packet is lost
during transmission, the network protocol at the receiver side
does not sense the arrival of any data packet at the corre-
sponding sampled instant and only previously stored data
in the buffer is available to the estimator. So, at kth sam-
pled index, measurement data are taken as y(k) = y(k − 1).
Since, y(k − 1) has already been processed, so, at kth sam-
pled index, estimator should proceed with the predicted state
and error covariance based on past estimates and skip the
measurement update equation.

Predicted state for this case can be obtained by setting
Gs = 0 in (8)

Xs(k + 1) = AsX (k) + Esu(k) (24)

Pre-multiplying (5) by F for r = q = 4 (packet dropout
case) and subtracting (24) from it, results augmented error
vector, ζ(k + 1), and subsequently, augmented error covari-
ance matrix can be expressed as

�ζ(k + 1) = As�ζ(k)AT
s + FB4�W BT

4 FT (25)

6 Parameter estimation

If true value of θ were known, the filtering algorithm would
be proposed as conventional Kalman Filter based on above
filter derivation. Since, from Section 2.1, system matrices
are continuous function of unknown parameter θ , an esti-
mate of the unknown parameter θ is used to identify the
system matrices as discussed in [15]. Based on measure-
ment information, innovation sequence and its gradient can
be expressed as

ỹ(k) = y(k) − CsXs(k|k − 1) (26)

∂j ỹ(k) = −(∂jCs)Xs(k|k − 1) − Cs∂jXs(k|k − 1) (27)

where ỹ(k) and ∂j ỹ(k) = ∂ ỹ(k)

∂θj
are called innovation process

and gradient of innovation process respectively. Existence
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of gradient innovation sequence has been discussed in [15].
ỹ(k) is also termed as output prediction error. Parameter
estimation criterion is, now, posed as minimisation of mean-
square out prediction error

min{E‖ỹ(k)‖2}, for all time index k .

Let the mean-square output prediction error at time index k ,
given the measurement up to time index k , be

(θ) = E(‖ỹ(k)‖2|{y1, y2, . . . , yn}) (28)

For (θ) to be minimum, for all k

2 ∗ E

(
s∑

j=1

(
∂ ỹ(k)

∂θj

)T

ỹ(k)|{y1, y2, . . . , yn}
)

= 0 (29)

where, j denotes the jth component of the vector θ ∈ Rs.
Note: ∂j denotes for ∂

∂θj
which stands for derivative with

respect to jth component of the θ .
Condition given by (29) is satisfied iff the estimate of

the θ approaches to its true value. To achieve the above
objective of self-tuning adaptive-filtering, parameter estima-
tion algorithm based on gradient of innovation sequence and
its gradient is posed as

For j = 1, 2, . . . , s, all components of θ1×s are given by

θ ′
j (k) = θj(k − 1) − γk

(
∂j ỹ(k)

)T
ỹ(k) (30)

θj(k) = bj; if θ ′
j (k) ≥ bj

= θ ′
j (k); if aj ≤ θ ′

j (k) ≤ bj

= aj; if θ ′
j (k) ≤ aj (31)

where, γk is the positive-conversing sequence. ∂j ỹ(k) and
ỹ(k) is calculated recursively using (26) and (27).

7 State and parameter estimation algorithm

Adaptive filter for combined state and parameter estima-
tion with aforementioned uncertainties is implemented in
two state Markov Chain, where, the first case stands for no
packet dropout (combination of q = 1, 2, 3) and second for
packet dropout case (q = 4). Since in the case of packet
dropout, no new data packet is received, we can say if
y(k) = y(k − 1), then it is certainly packet dropout case and
if y(k) �= y(k − 1), it is the case of q = 1, 2, 3.

Case 1: y(k) �= y(k − 1)
Pr{System at time index k is {Aq(θ), Bq(θ), Cq(θ), Dq(θ),

Eq(θ)}, given that measurement at time index k is y(k)} �=
πq(k), for q = 1, 2, 3, where πq(k) is given by (13)

Pr{System at time index k is {A4(θ), B4(θ), C4(θ), D4(θ),
E4(θ)}, given that measurement at time index k is y(k)} �=
π4(k) = 0.
Case 2: y(k) = y(k − 1)

Pr{System at time index k is {Aq(θ), Bq(θ), Cq(θ), Dq(θ),

Eq(θ)}, given that measurement at time index k is y(k)} �=
πq(k) = 0, for q = 1, 2, 3.

Pr{System at time index k is {A4(θ), B4(θ), C4(θ), D4(θ),
E4(θ)}, given that measurement at time index k is y(k)} �=
π4(k) = 1.

Based on above probabilities, the filter algorithm for
combined state estimation and parameter estimation is
implemented in a bootstrap manner as given below.

7.1 Initialisations

System matrices {A(θ), B(θ), E(θ), C(θ)} and noise covari-
ances {�w(θ), �v(θ)} should be known as continuous func-
tion of the parameter vector θ , whose true value is confined
within a known bound [a, b]. Its initial value is given by
θ(0).

A = A(θ(0)), As =
[

A 0
I 0

]
and

∂As

∂θj
=

[
∂A
∂θj

0
0 0

]

Error covariance matrix = P0, and E[x(0)] = x0, xs(0) = 0.

Then, �ζ(0) =
[

P0 P0

P0 P0

]
.

Gradient of initial error covariance ∂P0
∂θj

is taken as zero.
So

∂�ζ (0)

∂θj
= 0, for all components of θ (j = 1, 2, . . . , s)

Xs(0) = [xT
s (0) xT

s (0)]T = [0 0]T.

7.2 Kalman filter (algorithmic steps)

1. State Prediction

xs(k|k − 1) = Axs(k − 1|k − 1) + Eu(k − 1) (32)

Xs(k|k − 1) = [xT
s (k|k − 1) xT

s (k − 1|k − 1)]T (33)

Gradient of predicted state

∂jxs(k|k − 1) = A∂jxs(k − 1|k − 1) + (∂jA)xs(k − 1|k − 1)

+ ∂j(Eu(k − 1)) (34)

∂jXs(k|k − 1) = [∂jx
T
s (k|k − 1) ∂jx

T
s (k − 1|k − 1)]T (35)

2. Predicted error covariance matrix and its gradient

�ζ(k|k − 1) = As�ζ(k − 1|k − 1)AT
s

+
3∑

q=1

πqFBq�W BT
q FT (36)

∂j�ζ(k|k − 1) = (∂jAs)�ζ (k − 1|k − 1)AT
s

+ As(∂j�ζ(k − 1|k − 1))AT
s

+ As�ζ(k − 1|k − 1)(∂jAs)
T

+
3∑

q=1

πqF[(∂jBq)�W BT
q

+ Bq(∂j�W )Bq
T + Bq�W (∂jBq)

T]FT (37)

3. Kalman gain matrix: If y(k) = y(k − 1), (packet dropout)
then

Ks(k) = 0 (38)

∂jKs(k) = 0 (39)

else

Ks(k) = 	�ζ (k|k − 1)CT
s �−1 (40)

∂jKs(k) = 	(∂j�ζ(k|k − 1))CT�−1 + 	�ζ (k|k − 1)

× (∂jC
T
s )�−1 + 	�ζ (k|k − 1)CT

s �−1(∂j�)�−1

(41)
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where, � = Cs�ζ(k|k − 1)CT
s + ∑3

q=1 πqHq�W Hq
T and

∂j� = (∂jCs)�ζ (k|k − 1)CT
s + Cs(∂j�ζ(k|k − 1))CT

s

+ Cs�ζ(k|k − 1)(∂jCs
T) +

3∑
q=1

πqHq(∂j�w)Hq

4. Measurement update of state

ỹ(k) = y(k) − CsXs(k|k − 1) (42)

∂j ỹ(k) = −(∂jCs)Xs(k|k − 1) − Cs∂jXs(k|k − 1) (43)

xs(k|k) = xs(k|k − 1) + Ks(k)ỹ(k) (44)

∂jxs(k|k) = ∂jxs(k|k − 1) + (∂jKs(k))ỹ(k) + Ks(k)(∂j ỹ(k))
(45)

5. Covariance matrix update

Gs = [KT
s 0]T (46)

∂jGs = [∂jK
T
s 0]T (47)

�ζ(k|k) = [I − GsCs]�ζ(k + 1|k)[I − GsCs]T

+
3∑

q=1

πqGsHq�W H T
q GT

s (48)

∂j�ζ(k + 1|k + 1) = −[(∂jGs)Cs + Gs∂jCs]�ζ(k + 1|k)

× [I − GsCs]T − [I − GsCs]�ζ

× (k + 1|k)[(∂jGs)Cs + Gs∂jCs]T

+ [I − GsCs](∂j�ζ(k + 1|k))

× [I − GsCs]T

+ ∂j

(
3∑

q=1

πqGsHq�W H T
q GT

s

)
(49)

6. Parameter update
For j = 1, 2, . . . , s, all components of θ1×s are updates as

θ ′
j (k) = θj(k − 1) − γk(∂j ỹ(k))Tỹ(k) (50)

θj(k) = bj; if θ ′
j (k) ≥ bj

= θ ′
j (k); if aj ≤ θ ′

j (k) ≤ bj

= aj; if θ ′
j (k) ≤ aj, (51)

where, γk is the positive conversing sequence. So

A = A(θ(k)) and As =
[

A 0
I 0

]

The above steps are repeated recursively for the estimation
of states and parameters at every time index k .

Remark 1: The stability analysis of combined state and
parameter estimation-based state feedback controller under
network-induced uncertainties is not immediate or straight-
forward. In the present problem, the knowledge of estimated
parameter and states is utilised in compensator (controller)
design to improve the system performance. Sufficient condi-
tions for the existence of stabilising common controller for
a family of plants via convex polyhedron approach in LMI
framework based on Lyapunov function with the estimated
states are discussed in next section.

8 Robust stabilisation of NCS with
parameteric uncertainties

The above proposed algorithm is used to estimate the states
and parameters of the system based on innovation sequence
in measurement under network induced uncertainties. An
estimator based robust controller is designed to stabilise
the system at every point of the convex polyhedron of
parameters bound. The Fig. 1 shows the block diagram
representation of uncertain NCS with state and parameter
estimation algorithm along with the controller where, con-
troller and actuator are connected directly through a reliable
channel.

Since network-induced uncertainties have already been
considered in design of estimator. However, the dynamics of
NCS is governed by the combined effect of estimated state
and gradient of estimated state, those are represented as

xs(k + 1|k) = Axs(k|k) + Eu(k) (52)

∂jxs(k + 1|k) = A∂jxs(k|k) + (∂jA)xs(k|k)

+ (∂jE)u(k) + E∂ju(k) (53)

State feedback controller law is expressed as

u(k) = Kcxs(k|k) (54)

∂ju(k) = Kc∂jxs(k|k) (55)

where Kc is controller gain vector. So, closed-loop systems
are given as

xs(k + 1|k) = (A + EKc)xs(k|k) (56)

∂jxs(k + 1|k) = (A + EKc)∂jxs(k|k)

+ [(∂jA) + (∂jE)Kc]xs(k|k) (57)

It may be noted that each element of the matrix A in (56)
and (57) is a continuous function over a compact set with
its lower and upper bounds. A sufficient condition for the
stability of such system at all points within the polyhedron
(Fig. 2) formed with the corner matrices Ai, i = 1, 2, . . . , s is
stated below [16]

Theorem 1: The sufficient condition for the system
described by (56) and (57) to be asymptotically stable at
all points on the polyhedron vertices with memoryless state

Fig. 1 NCS system with estimator-based controller (net-
work-induced uncertainties are considered only on sensor to
estimator)
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feedback controller gain Kc = ��−1 is that there exist � =
�T > 0 and � for given scalars ε1 > 0 and ε2 > 0 satisfying
the following LMIs (see (58))

where, Ai, i = 1, 2, . . . , 2s is system matrix at ith coordinate
of the polyhedron.

Proof: Let the Lyapunov functional be

V (ξ(k|k), k) = xT
s (k|k)Pxs(k|k) + (∂jx

T
s (k|k))Q(∂jxs(k|k))

(59)

where P = PT > 0, Q = QT > 0 and ξ(k) = [xT
s (k) ∂jxT

s (k)]T.
Then, we have

�V (ξ(k|k), k) = V (ξ(k + 1|k), k + 1) − V (ξ(k|k), k)

= xT
s (k + 1|k)Pxs(k + 1|k) − xT

s (k|k)Pxs(k|k)

+ (∂jx
T
s (k + 1|k))Q(∂jxs(k + 1|k))

− (∂jx
T
s (k|k))Q(∂jxs(k|k)) (60)

Substituting (52)–(55) into (60) and rearranging

�V (ξ(k), k) = ξT(k)

[
�11 �12

�21 �22

]
ξ(k) (61)

where

�11 = −P + (A + EKc)
TP(A + EKc)

+ [∂jA + (∂jE)Kc]TQ[∂jA + (∂jE)Kc]
�12 = [∂jA + (∂jE)Kc]TQ(A + EKc)

�21 = (A + EKc)
TQ(∂jA + (∂jE)Kc) and

�22 = (A + EKc)
TQ(A + EKc) − Q

For asymptotic stability of the estimated states described by
(52)–(55), �V (ξ(k), k) < 0 or alternatively[

�11 �12

�21 �22

]
< 0 (62)

Applying Schur complements to (62) and substituting
P = ε1�

−1 and Q = ε2�
−1, (62) can be expressed as

⎡
⎢⎣

−ε1�
−1 ∗ ∗ ∗

0 −ε2�
−1 ∗ ∗

∂jA + (∂jE)Kc (A + EKc) −ε−1
2 � ∗

(A + EKc) 0 0 −ε−1
1 �

⎤
⎥⎦ < 0

(63)

where, scalars ε1 > 0 and ε2 > 0 are tuning parameters.
Pre- and post-multiplying (63) by diag[�, �, I , I ] and

then, substituting Kc� = �, we obtain the LMI (58). �

Remark 2: A common controller Kc is designed by solving
a set of LMI (58) at the coordinate points of the convex

Fig. 2 Convex polygon of two parameters with θ1 ∈ (a1, b1) and
θ2 ∈ (a2, b2)

polyhedron formed by the parameters bound as shown in
Fig. 2, which ensures the stability of the closed-loop system
in presence of uncertainties but without any any guarantee
of good performance. However, the positive scalars ε1 and
ε2 can be tuned judiciously to improve the performance of
the system.

9 Numerical examples

In this section, the effectiveness of the algorithm described
in Sections 7.2 has been illustrated by a numerical example
under different cases.

The system matrices for the state-space model described
by (1) and (2) are given as

A(θ) =
[

1.724θ −0.74383θ
θ 0

]
, B(θ) =

[
1

0.5

]
,

E(θ) =
[

1
1

]
, and C(θ) = [1 1]

where θ is the unknown parameter whose true value is
confined in a compact set [0.6, 1.4]. Initial estimate of θ
is assumed to be θ(0) = 1 and positive sequence γk = γ0/k ,

Fig. 3 Estimated θ (broken line) and its true value (solid line)
without controller (θ = 0.7 for first 6000 sample index then
changed to 1.1)

�i =
⎡
⎢⎣

−ε1� ∗ ∗ ∗
0 −ε2� ∗ ∗

(∂jA)� + (∂jE)� Ai� + E� −ε−1
2 � ∗

Ai� + E� 0 0 −ε−1
1 �

⎤
⎥⎦ < 0 (58)
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Fig. 4 State responses without controller (actual value of
θ = constant and perturbation is given at 6000 time index)

where γ0 = 0.4. Process and measurement noise covariance
matrices are given as �w = 1, and �v = 0.25, respectively.

Gradients of system matrices are given by

∂A

∂θj
=

[
1.7240 −0.7488

1 0

]
and

∂B

∂θj
= ∂C

∂θj
= ∂E

∂θj
= ∂�w

∂θj
= ∂�v

∂θj
= 0

Fig. 5 State responses without controller with θ varying
randomly

Initial values x(0) = [10 8]T, P0 =
[

20 0
0 20

]
and xs(0) =

[0 0]T. Probabilities of uncertainties for the NCS because
of network channel are ρ1 = 0.8, ρ2 = 0.02, ρ3 = 0.09 and
ρ4 = 0.09. Initial gradient of state and covariance are

∂xs(0)

∂θj
= [0 0]T and

∂P0

∂θj
=

[
0 0
0 0

]

Simulation results are considered for the following cases:

Fig. 6 Error between estimated θ and true value of θ without controller (θ is varying randomly)

Fig. 7 Estimated θ (broken line) and its true value (solid line) with controller (θ = 0.7 for first 6000 sample index then changed to 1.3)
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Fig. 8 State responses with controller (actual value of
θ = constant and perturbation is given at 6000 time index

9.1 Without controller (u(k)=0)

For constant parameter (θ): We have considered initially
the true value of θ is 0.7 and after 6000 iteration its value
is changed to 1.1.

Fig. 3 shows the effectiveness of the parameter estimation
algorithm. Actual and estimated states under the parametric
uncertainties are shown in Fig. 4.

Parameter (θ) changing randomly: Actual value of θ may
have any value in the bound [0.6, 1.4] and the estimated
states and parameters responses are shown in Figs. 5 and 6.

9.2 With controller

For the present case, system matrix A(θ) is function of scalar
θ , there are two extreme point system matrices. Tuning
parameters ε1 and ε2 are determined by hit and trial method
to obtain feasible solution of LMIs (�i < 0, i = 1, 2) given
by (58), at two extreme values of the system parameters (θ ).
Solution of the set of two LMIs for the tuned parameters
ε1 = 0.0016 and ε2 = 0.00018 are given as

Kc = [1.5894 −2.6459]
� =

[
14.4911 13.2922
13.2922 12.2848

]

System responses with controller are given following cases.

For constant parameter (θ): We have considered initially
the true value of θ is 0.7 and after 6000 iteration its value
is changed to 1.1.

Since, the system matrix at θ = 1.3 is unstable
(eigenvalue are {1.1206 + j0.0364, 1.1206 − j0.0364}, the

Fig. 9 State responses with controller (true value of θ is varying
randomly)

designed controller stabilises the NCS based on estimated
states as illustrated in Figs. 7 and 8.

Parameter (θ) changing randomly: Actual value of θ may
have any value in the bound [0.6, 1.4] and the estimated
states and parameters responses with the controller are given
by Figs. 9 and 10. It can be seen from Fig. 9, that the
designed controller stabilises the NCS under the paramet-
ric perturbation in the given bound [0.6 1.4]. Since, the
system parameter θ is estimated based on gradient in mea-
surement innovation, the random change in actual value
of θ reflects slowly on estimated θ (see, Figs. 3, 6, 7
and 10).

Fig. 11 shows the variation in trace of error covariance
under the case of (i) parameter (θ ) is constant and (ii) param-
eter (θ ) is randomly changing. It can be noted that the packet
dropout time indices appear as spikes in variation of trace
of error covariance matrix.
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Fig. 11 Trace of error covariance

a θ is constant
b θ is randomly changing

Fig. 10 Error between estimated θ and true value of θ with controller (θ is varying randomly)
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10 Conclusions

In this paper, design of adaptive Kalman filter has been
presented for the network control systems involving ran-
dom sensor delays, missing measurements and packet
dropouts. Adaptive Kalman filter gain is designed for a
parameter-dependent system where the variations of system
parameters are unknown, but its lower and upper bounds
around the nominal values of parameters are assumed
to be known a priori. Simultaneous state and parame-
ter estimation algorithms are adopted based on innovation
in measurement under all three uncertainties in measure-
ments that have some a priori knowledge of probabil-
ities of occurrence. A robust controller is designed to
stabilise the NCS under the structure parameters pertur-
bation within the given bound. The design of controller
uses the vertices of system matrices corresponding to
extreme point values of parameters. The state and param-
eter estimation algorithms are combined in bootstrap man-
ner to implement the control, which in turn stabilises the
NCS.

In the present work, we have considered the possibility
of uncertainties from sensor to estimator only. Here, we
have assumed that the controller is near by the actuator and
the generated control signal is available to the actuator as
well as estimator without any uncertainties. This work can
be extended to introduce all aforesaid uncertainties for the
channel between controller and actuator.
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